David Tall a Theory of Mathematical Growth through Embodiment , Symbolism and Proof

نویسنده

  • DAVID TALL
چکیده

This presentation considers the biological and mathematical mechanisms involved in the development from the child to a mathematician and theorizes how individuals grow in different ways over a life-time’s experience. The theory is then used to respond to questions on the long-term teaching and learning of mathematics over the whole curriculum from child to adult. Résumé. Une théorie du développement mathématique par l’embodiment, le symbolisme et la preuve. Cette présentation envisage les mécanismes biologiques et mathématiques engagés dans le développement de l'enfant au mathématicien et propose une approche théorique pour interpréter les différences de croissance individuelles résultant de l'expérience de toute une vie. La théorie est ensuite utilisée pour répondre à des questions concernant l'enseignement sur le long terme et l'apprentissage des mathématiques sur toute la scolarité de l'enfance à l'âge adulte. Mots-clés. Pensée mathématique, objet de pensée, action, opération symbolique, propriété, inné, déjà vu, connaissance procédurale, connaissance déclarative. ___________________________________________________________________

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cognitive and Social Development of Proof through Embodiment, Symbolism & Formalism

Proof is a construct of mathematical communities over many generations and is introduced to new generations as they develop cognitively in a social context. Here I present a practical framework for this development in simple terms that nevertheless has deep origins. The framework builds on an analysis of the growth of mathematical ideas based on genetic facilities set-before birth. It unfolds a...

متن کامل

The Transition to Formal Thinking in Mathematics

This paper focuses on the changes in thinking involved in the transition from school mathematics to formal proof in pure mathematics at university. School mathematics is seen as a combination of visual representations, including geometry and graphs, together with symbolic calculations and manipulations. Pure mathematics in university shifts towards a formal framework of axiomatic systems and ma...

متن کامل

Developing a theory of mathematical growth

In this paper I formulate a basic theoretical framework for the ways in which mathematical thinking grows as the child develops and matures into an adult. There is an essential need to focus on important phenomena, to name them and reflect on them to build rich concepts that are both powerful in use and yet simple to connect to other concepts. The child begins with human perception and action, ...

متن کامل

The Long-term Cognitive Development of Different Types of Reasoning and Proof

This paper presents a long-term framework for the development of mathematical thinking from the thought processes of early childhood to the formal structures of formal mathematics and proof. It sees the development building on what the individual has met before which affects current thinking. Initially the child begins to coordinate perception and action to build thinkable concepts in at least ...

متن کامل

Written for a special edition of ZDM entitled Transforming Mathematics Education through the use of Dynamic

This paper considers the role of dynamic aspects of mathematics specifically focusing on the calculus, including both physical human action and computer software that responds to physical action to produce dynamic visual effects. The development builds from dynamic human embodiment, uses arithmetic calculations in computer software to calculate 'good enough' values of required quantities and al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006